48 research outputs found

    Sacrificing Accuracy for Reduced Computation: Cascaded Inference Based on Softmax Confidence

    Full text link
    We study the tradeoff between computational effort and accuracy in a cascade of deep neural networks. During inference, early termination in the cascade is controlled by confidence levels derived directly from the softmax outputs of intermediate classifiers. The advantage of early termination is that classification is performed using less computation, thus adjusting the computational effort to the complexity of the input. Moreover, dynamic modification of confidence thresholds allow one to trade accuracy for computational effort without requiring retraining. Basing of early termination on softmax classifier outputs is justified by experimentation that demonstrates an almost linear relation between confidence levels in intermediate classifiers and accuracy. Our experimentation with architectures based on ResNet obtained the following results. (i) A speedup of 1.5 that sacrifices 1.4% accuracy with respect to the CIFAR-10 test set. (ii) A speedup of 1.19 that sacrifices 0.7% accuracy with respect to the CIFAR-100 test set. (iii) A speedup of 2.16 that sacrifices 1.4% accuracy with respect to the SVHN test set

    The Index-Based Subgraph Matching Algorithm (ISMA): Fast Subgraph Enumeration in Large Networks Using Optimized Search Trees

    Get PDF
    Subgraph matching algorithms are designed to find all instances of predefined subgraphs in a large graph or network and play an important role in the discovery and analysis of so-called network motifs, subgraph patterns which occur more often than expected by chance. We present the index-based subgraph matching algorithm (ISMA), a novel tree-based algorithm. ISMA realizes a speedup compared to existing algorithms by carefully selecting the order in which the nodes of a query subgraph are investigated. In order to achieve this, we developed a number of data structures and maximally exploited symmetry characteristics of the subgraph. We compared ISMA to a naive recursive tree-based algorithm and to a number of well-known subgraph matching algorithms. Our algorithm outperforms the other algorithms, especially on large networks and with large query subgraphs. An implementation of ISMA in Java is freely available at http://sourceforge.net/projects/isma

    Experimental Evaluation of Subgraph Isomorphism Solvers

    Get PDF
    International audienceSubgraph Isomorphism (SI) is an NP-complete problem which is at the heart of many structural pattern recognition tasks as it involves finding a copy of a pattern graph into a target graph. In the pattern recognition community, the most well-known SI solvers are VF2, VF3, and RI. SI is also widely studied in the constraint programming community, and many constraint-based SI solvers have been proposed since Ullman, such as LAD and Glasgow, for example. All these SI solvers can solve very quickly some large SI instances, that involve graphs with thousands of nodes. However, McCreesh et al. have recently shown how to randomly generate SI instances the hardness of which can be controlled and predicted, and they have built small instances which are computationally challenging for all solvers. They have also shown that some small instances, which are predicted to be easy and are easily solved by constraint-based solvers, appear to be challenging for VF2 and VF3. In this paper, we widen this study by considering a large test suite coming from eight benchmarks. We show that, as expected for an NP-complete problem, the solving time of an instance does not depend on its size, and that some small instances coming from real applications are not solved by any of the considered solvers. We also show that, if RI and VF3 can solve very quickly a large number of easy instances, for which Glasgow or LAD need more time, they fail at solving some other instances that are quickly solved by Glasgow or LAD, and they are clearly outperformed by Glasgow on hard instances. Finally, we show that we can easily combine solvers to take benefit of their complementarity

    Heuristics-based detection to improve text/graphics segmentation in complex engineering drawings.

    Get PDF
    The demand for digitisation of complex engineering drawings becomes increasingly important for the industry given the pressure to improve the efficiency and time effectiveness of operational processes. There have been numerous attempts to solve this problem, either by proposing a general form of document interpretation or by establishing an application dependant framework. Moreover, text/graphics segmentation has been presented as a particular form of addressing document digitisation problem, with the main aim of splitting text and graphics into different layers. Given the challenging characteristics of complex engineering drawings, this paper presents a novel sequential heuristics-based methodology which is aimed at localising and detecting the most representative symbols of the drawing. This implementation enables the subsequent application of a text/graphics segmentation method in a more effective form. The experimental framework is composed of two parts: first we show the performance of the symbol detection system and then we present an evaluation of three different state of the art text/graphic segmentation techniques to find text on the remaining image

    Automatic mapping of atoms across both simple and complex chemical reactions

    Get PDF
    Mapping atoms across chemical reactions is important for substructure searches, automatic extraction of reaction rules, identification of metabolic pathways, and more. Unfortunately, the existing mapping algorithms can deal adequately only with relatively simple reactions but not those in which expert chemists would benefit from computer's help. Here we report how a combination of algorithmics and expert chemical knowledge significantly improves the performance of atom mapping, allowing the machine to deal with even the most mechanistically complex chemical and biochemical transformations. The key feature of our approach is the use of few but judiciously chosen reaction templates that are used to generate plausible "intermediate" atom assignments which then guide a graph-theoretical algorithm towards the chemically correct isomorphic mappings. The algorithm performs significantly better than the available state-of-the-art reaction mappers, suggesting its uses in database curation, mechanism assignments, and - above all - machine extraction of reaction rules underlying modern synthesis-planning programs

    A Parallel, Backjumping Subgraph Isomorphism Algorithm Using Supplemental Graphs

    Get PDF
    This registry entry contains a reference to the code, data and experimental scripts needed to reproduce the subgraph isomorphism paper: Ciaran McCreesh and Patrick Prosser, "A Parallel, Backjumping Subgraph Isomorphism Algorithm using Supplemental Graphs". To appear at the 21st International Conference on Principles and Practice of Constraint Programming (CP 2015)

    Sequential and parallel solution-biased search for subgraph algorithms

    Get PDF
    Funding: This work was supported by the Engineering and Physical Sciences Research Council (grant numbers EP/P026842/1, EP/M508056/1, and EP/N007565).The current state of the art in subgraph isomorphism solving involves using degree as a value-ordering heuristic to direct backtracking search. Such a search makes a heavy commitment to the first branching choice, which is often incorrect. To mitigate this, we introduce and evaluate a new approach, which we call “solution-biased search”. By combining a slightly-random value-ordering heuristic, rapid restarts, and nogood recording, we design an algorithm which instead uses degree to direct the proportion of search effort spent in different subproblems. This increases performance by two orders of magnitude on satisfiable instances, whilst not affecting performance on unsatisfiable instances. This algorithm can also be parallelised in a very simple but effective way: across both satisfiable and unsatisfiable instances, we get a further speedup of over thirty from thirty-six cores, and over one hundred from ten distributed-memory hosts. Finally, we show that solution-biased search is also suitable for optimisation problems, by using it to improve two maximum common induced subgraph algorithms.Postprin
    corecore